Sztuczna inteligencja

Uczenie maszynowe w Pythonie dla każdego

Mark Fenner

Sztuczna inteligencja i uczenie maszynowe rozwijają się z niezwykłą dynamiką i znajdują coraz więcej różnorodnych zastosowań w niemal wszystkich branżach. Ten spektakularny postęp jest silnie związany z osiągnięciami w świecie sprzętu i oprogramowania. Znajomość tych bibliotek i narzędzi umożliwia tworzenie systemów uczących się nawet tym osobom, które nie dysponują głęboką wiedzą z dziedziny matematyki. Książka jest przeznaczona dla każdego, kto choć trochę zna Pythona i chce nauczyć się uczenia maszynowego. Zagadnienia matematyczne zostały tu zaprezentowane w minimalnym stopniu, za to więcej uwagi poświęcono koncepcjom, na których oparto najważniejsze i najczęściej używane narzędzia oraz techniki uczenia maszynowego. Następnie pokazano praktyczne zasady implementacji uczenia maszynowego z wykorzystaniem najdoskonalszych bibliotek i narzędzi Pythona. Opisano używane dziś komponenty systemów uczących się, w tym techniki klasyfikacji i regresji, a także inżynierię cech, która pozwala przekształcać dane na użyteczną postać. Przeanalizowano liczne algorytmy i najczęściej stosowane techniki uczenia maszynowego. Pokrótce przedstawiono modele grafowe i sieci neuronowe, w tym sieci głębokie, jak również połączenie tych technik z bardziej zaawansowanymi metodami, przydatnymi choćby w pracy na danych graficznych i tekstowych.

Książka dostępna w księgarniach: Allegro


Python Machine learning i deep learning

Vahid Mirjalili, Sebastian Raschka

Oto obszerny przewodnik po uczeniu maszynowym i uczeniu głębokim w Pythonie. Zawiera dokładne omówienie najważniejszych technik uczenia maszynowego oraz staranne wyjaśnienie zasad rządzących tą technologią. Poszczególne zagadnienia zilustrowano mnóstwem wyjaśnień, wizualizacji i przykładów, co znakomicie ułatwia zrozumienie materiału i sprawne rozpoczęcie samodzielnego budowania aplikacji i modeli, takich jak te służące do klasyfikacji obrazów, odkrywania ukrytych wzorców czy wydobywania dodatkowych informacji z danych. Wydanie trzecie zostało zaktualizowane - znalazł się w nim opis biblioteki TensorFlow 2 i najnowszych dodatków do biblioteki scikit-learn. Dodano również wprowadzenie do dwóch nowatorskich technik: uczenia przez wzmacnianie i budowy generatywnych sieci przeciwstawnych (GAN).

Książka dostępna w księgarniach: Allegro


Uczenie głębokie od zera

Seth Weidman

Uczenie głębokie (ang. deep learning) zyskuje ostatnio ogromną popularność. Jest to ściśle związane z coraz częstszym zastosowaniem sieci neuronowych w przeróżnych branżach i dziedzinach. W konsekwencji inżynierowie oprogramowania, specjaliści do spraw przetwarzania danych czy osoby w praktyce zajmujące się uczeniem maszynowym muszą zdobyć solidną wiedzę o tych zagadnieniach. Ten praktyczny podręcznik, poświęcony podstawom uczenia głębokiego, zrozumiale i wyczerpująco przedstawia zasady działania sieci neuronowych z trzech różnych poziomów: matematycznego, obliczeniowego i konceptualnego. Takie podejście wynika z faktu, że dogłębne zrozumienie sieci neuronowych wymaga nie jednego, ale kilku modeli umysłowych, z których każdy objaśnia inny aspekt działania tych sieci. Zaprezentowano tu również techniki implementacji poszczególnych elementów w języku Python, co pozwala utworzyć działające sieci neuronowe. Dzięki tej książce stanie się jasne, w jaki sposób należy tworzyć, uczyć i stosować wielowarstwowe, konwolucyjne i rekurencyjne sieci neuronowe w różnych praktycznych zastosowaniach.

Książka dostępna w księgarniach: Allegro


Przetwarzanie języka naturalnego w akcji

Hapke Hannes, Howard Cole, Lane Hobson

Ostatnie postępy w głębokim uczeniu się (deep learning) umożliwiają aplikacjom rozumienie tekstu i mowy z niezwykłą dokładnością. Rezultat? Chatboty, które mogą naśladować prawdziwych ludzi, sensowne dopasowywanie życiorysu do rodzaju pracy, doskonałe wyszukiwanie predykcyjne i automatycznie generowane podsumowania dokumentów – wszystko to przy niskich kosztach. Nowe techniki, wraz z dostępnymi narzędziami, takimi jak Keras i TensorFlow, sprawiają, że profesjonalna jakość przetwarzania języka naturalnego (Natural Language Processing, NLP) jest łatwiejsza do osiągnięcia niż kiedykolwiek wcześniej. Książka jest przewodnikiem po tworzeniu maszyn, które potrafią czytać i interpretować ludzki język. Użyjecie w nim łatwo dostępnych pakietów Pythona, aby wychwycić znaczenie tekstu i odpowiednio zareagować. Książka poszerza tradycyjne podejścia do NLP o sieci neuronowe, nowoczesne algorytmy głębokiego uczenia się i techniki generatywne w miarę rozwiązywania rzeczywistych problemów, takich jak wyodrębnianie dat i nazwisk, komponowanie tekstu i odpowiadanie na pytania w swobodnej formie.

Książka dostępna w księgarniach: Allegro


Copyright Creative Commons Uznanie autorstwa 3.0 - Charles R. Severance

Strona utrzymywana przez Wydział Matematyki i Informatyki Uniwersytetu im. Adama Mickiewicza w Poznaniu.